## Mark Scheme 4732 June 2007

Note: "3 sfs" means an answer which is equal to, or rounds to, the given answer. If such an answer is seen and then later rounded, apply ISW.

| 1 | $\begin{aligned} & (0 \times 0.1)+1 \times 0.2+2 \times 0.3+3 \times 0.4 \\ & =2(.0) \\ & \left(0^{2} \times 0.1\right)+1 \times 0.2+2^{2} \times 0.3+3^{2} \times 0.4 \quad(=5) \\ & -2^{2} \\ & =1 \end{aligned}$ | M1 A1 M1 M1 A1 5 | $\geq 2$ non-zero terms correct eg $\div 4:$ M0 <br> $\geq 2$ non-zero terms correct $\div 4: \mathrm{M} 0$ Indep, ft their $\mu$. Dep +ve result $\begin{gathered} (-2)^{2} \times 0.1+(-1)^{2} \times 0.2+0^{2} \times 0.3+1^{2} \times 0.4: \mathrm{M} 2 \\ \geq 2 \text { non- } 0 \text { correct: } \mathrm{M} 1 \quad \div 4: \mathrm{M} 0 \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Total |  | 5 |  |
| 2 |  | $\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ 5 \end{array}$ | Consistent <br> attempt rank <br> other judge$\quad$RCFUP  <br> 35214 31452 <br> 12345 54321 <br> All $5 d^{2}$ attempted \& added. Dep ranks att'd <br> Dep $2^{\text {nd }}$ M1 |
| Total |  | 5 |  |
| 3 i | $\begin{aligned} & { }^{15} \mathrm{C}_{7} \text { or }{ }^{15!}{ }_{778!} \\ & 6435 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & 2 \\ & \hline \end{aligned}$ |  |
| ii | ${ }^{6} \mathrm{C}_{3} \times{ }^{9} \mathrm{C}_{4} \text { or }{ }^{6!/ 3!3!} \times{ }^{9!/ 4!5!}$ $2520$ | $\mathrm{M1}$ <br> A1 <br> 2 | $\begin{aligned} & \text { Alone except allow } \div{ }^{15} \mathrm{C}_{7} \\ & \text { Or }{ }^{6} \mathrm{P}_{3} \times{ }^{9} \mathrm{P}_{4} \text { or }{ }^{6!3!} \times{ }^{9!/ 5!} \text { Allow } \div{ }^{15} \mathrm{P}_{7} \\ & 362880 \\ & \text { NB not } 6!3!!^{9!} / 4! \end{aligned}$ |
| Total |  | 4 |  |
| 4ia | 1/3 oe | B1 1 | B $\rightarrow$ W MR: $\max (\mathrm{a}) \mathrm{BO}(\mathrm{b}) \mathrm{M} 1 \mathrm{M} 1$ (c)B1M1 |
| b | $\begin{aligned} & \mathrm{P}(\mathrm{BB})+\mathrm{P}(\mathrm{WB}) \text { attempted } \\ & =4 / 10 \times 3 / 9+6 / 10 \times 4 / 9 \quad \text { or } 2 / 15+4 / 15 \\ & =2 / 5 \mathrm{oe} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & 3 \end{aligned}$ | $\begin{aligned} & \text { Or } 4 / 10 \times 3 / 9 \mathrm{OR} / 10 \times 4 / 9 \text { correct } \\ & \mathrm{NB}^{4} / 10 \times 4 / 10+6 / 10 \times 4 / 10=2 / 5: \text { M1M0A0 } \end{aligned}$ |
| c | Denoms $9 \& 8$ seen or implied $3 / 9 \times 2 / 8+6 / 9 \times 3 / 8$ $=1 / 3 \mathrm{oe}$ | B1 M1 <br> A1 <br> 3 | $\mathrm{Or}^{2} / 15$ as numerator <br>  <br> May not see wking |
| ii | P (Blue) not constant or discs not indep, so no | B1 1 | Prob changes as discs removed Limit to no. of discs. Fixed no. of discs Discs will run out Context essential: "disc" or "blue" NOT fixed no. of trials NOT because without repl Ignore extra |
| Total |  | 8 |  |


| 5 i | $\begin{aligned} & 1991 \\ & 100000 \text { to } 110000 \end{aligned}$ | B1 ind B1 ind 2 | Or fewer in 2001 <br> Allow digits 100 to 110 |
| :---: | :---: | :---: | :---: |
| iia | $\begin{aligned} & \text { Median }=29 \text { to } 29.9 \\ & \text { Quartiles } 33 \text { to } 34,24.5 \text { to } 26 \\ & =7.5 \text { to } 9.5 \\ & 140 \text { to } 155 \\ & 23 \text { to } 26.3 \% \end{aligned}$ | B1 M1 A1 M1 A1 5 | Or one correct quartile and subtr <br> NOT from incorrect wking <br> $\times 1000$, but allow without <br> Rnded to 1 dp or integer 73.7 to $77 \%$ : SC1 |
| b | Older <br> Median (or ave) greater \} <br> $\%$ older mothers greater oe\} <br> \% younger mothers less oe\} | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$ | Or 1991 younger <br> Any two <br> Or 1991 steeper so more younger: B2 <br> NOT mean gter <br> Ignore extra |
| Total |  | 10 |  |


| 6ia | $\begin{aligned} & \text { Correct subst in } \geq \text { two } S \text { formulae } \\ & \frac{767-\frac{60 \times 72}{8}}{\underbrace{\text { or }}}{ }^{\frac{60^{2}}{\left(1148-\frac{227}{8}\right)\left(810-\frac{72^{2}}{8}\right)}} \\ & =0.675(3 \mathrm{sfs}) \end{aligned}$ | $\begin{array}{\|ll} \hline \text { M1 } & \\ \text { M1 } & \\ & \\ \text { A1 } & 3 \end{array}$ | Any version <br> All correct. Or $\frac{767-8 \times 7.5 \times 9}{/\left(\left(1148-8 \times 7.5^{2}\right)\left(810-8 \times 9^{2}\right)\right)}$ <br> or correct substn in any correct formula for $r$ |
| :---: | :---: | :---: | :---: |
| b | 1 <br> $y$ always increases with $x$ or ranks same <br> oe | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | +ve grad thro'out. Increase in steps. Same order. Both ascending order Perfect RANK corr'n Ignore extra NOT Increasing proportionately |
| iia | Closer to 1 , or increases because nearer to st line | $\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | Corr'n stronger. <br> Fewer outliers. "They" are outliers Ignore extra |
| b | None, or remains at 1 Because $y$ still increasing with $x$ oe | $\begin{array}{\|ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | $\Sigma d^{2}$ still 0 . Still same order. Ignore extra NOT differences still the same. NOT $\mathrm{ft}(\mathrm{i})(\mathrm{b})$ |
| iii | 13.8 to 14.0 | B1 1 |  |
| iv | (iii) or graph or diag or my est <br> Takes account of curve | $\begin{array}{ll} \text { B1 } & \\ \text { B1 } & 2 \end{array}$ | Must be clear which est. Can be implied. "This est" probably $\Rightarrow$ using equn of line Straight line is not good fit. Not linear. Corr'n not strong. |
| Total |  | 12 |  |
| 7 i | P (contains voucher) constant oe Packets indep oe | $\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { B1 } & 2 \\ \hline \end{array}$ | Context essential NOT vouchers indep |
| ii | 0.9857 or 0.986 (3 sfs) | B2 2 | B1 for 0.9456 or 0.946 or 0.997 (2) or for 7 terms correct, allow one omit or extra <br> NOT $1-0.9857=0.0143$ (see (iii)) |
| iii | $\begin{aligned} & (1-0.9857) \\ & =0.014(3)(2 \mathrm{sfs}) \end{aligned}$ | $\begin{aligned} & \text { B1ft } \\ & 1 \end{aligned}$ | Allow 1-their (ii) correctly calc'd |
| iv | $\mathrm{B}(11,0.25)$ or 6 in 11 wks stated or impl <br> ${ }^{11} \mathrm{C}_{6} \times 075^{5} \times 0.25^{6} \quad(=0.0267663)$ <br> $\mathrm{P}(6$ from 11$) \times 0.25$ <br> $=0.00669$ or $6.69 \times 10^{-3}(3 \mathrm{sfs})$ | B1  <br> M1  <br> M1  <br> A1 4 | $\begin{aligned} & \text { or } 0.75^{a} \times 0.25^{b}(a+b=11) \text { or }{ }^{11} \mathrm{C}_{6} \\ & \text { dep B1 } \end{aligned}$ |
| Total |  | 9 |  |


| 8 i | $\begin{aligned} & \text { V0.04 }(=0.2) \\ & (1-\text { their } \sqrt{ } 0.04)^{2} \\ & =0.64 \end{aligned}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
| ii | $\begin{aligned} & 1-p \text { seen } \quad \text { M1 for either } \\ & 2 p(1-p)=0.42 \text { or } p(1-p)=0.21 \text { oe } \\ & 2 p^{2}-2 p+0.42(=0) \text { or } p^{2}-p+0.21(=0) \\ & \frac{2 \pm \sqrt{\left((-2)^{2}-4 \times 0.42\right)}}{2 \times 2} \text { or } \frac{1 \pm \sqrt{ }\left((-1)^{2}-4 \times 0.21\right)}{2 \times 1} \\ & \text { or }(p-0.7)(p-0.3)=0 \text { or }(10 p-7)(10 p-3)=0 \\ & p=0.7 \text { or } 0.3 \end{aligned}$ | B1 <br> M1 <br> M1 <br> M1 <br> A1 5 | $2 p q=0.42$ or $p q=0.21$ Allow $p q=0.42$ or opp signs, correct terms any order $(=0)$ <br> oe Correct <br> Dep B1M1M1 Any corr subst'n or fact'n <br> Omit 2 in $2^{\text {nd }}$ line: max B1M1M0M0A0 <br> One corr ans with no or inadeq wking: SC 1 eg $0.6 \times 0.7=0.42 \Rightarrow p=0.7$ or 0.6 $\begin{array}{ll} \left.\begin{array}{l} p^{2}+2 p q+q^{2}=1 \\ p^{2}+q^{2}=0.58 \end{array}\right\} & \text { B1 } \\ \left.\begin{array}{l} 1=0.21 / q \end{array}\right\} & \\ p^{2}-0.58 p^{2}+0.0441=0 & \text { M1 } \\ \text { corr subst'n or fact'n } & \text { M1 } \end{array}$ $$ |
| Total |  | 8 |  |
| 9 ia | $\begin{aligned} & 1 /^{1 / 5} \\ & =5 \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ |  |
| b | $\left[\begin{array}{l} (4 / 5)^{3} \times 1 / 5 \\ =64 / 650 \text { or } 0.102(3 \mathrm{sfs}) \end{array}\right.$ | $\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$ |  |
| c | $\begin{aligned} & (4 / 5)^{4} \\ & =256 / 625 \text { or ar.t } 0.410(3 \mathrm{sfs}) \text { or } 0.41 \end{aligned}$ | $\begin{array}{ll} \mathrm{M} 1 \\ \\ \mathrm{~A} 1 & 2 \end{array}$ | $\begin{gathered} \text { or } 1-\left(1 / 5+4 / 5 \times 1 / 5+(4 / 5)^{2} \times 1 / 5+(4 / 5)^{3} \times 1 / 5\right) \\ \text { NOT } 1-(4 / 5)^{4} \end{gathered}$ |
| iia | $\mathrm{P}(Y=1)=p, \mathrm{P}(Y=3)=q^{2} p, \mathrm{P}(Y=5)=q^{4} p$ | B1 1 | $\begin{aligned} & \mathrm{P}(Y=1)+\mathrm{P}(Y=3)+\mathrm{P}(Y=5)=p+q^{2} p+q^{4} p \\ & p, p(1-p)^{2}, p(1-p)^{4} \\ & q^{1-1}, q^{3-1}, q^{5-1} \end{aligned}$ <br> or any of these with $1-p$ instead of $q$ <br> "Always $q$ to even power $\times p$ " <br> Either associate each term with relevant prob Or give indication of how terms derived $>\text { two terms }$ |
| b | Recog that c.r. $=q^{2}$ or $(1-p)^{2}$ $\begin{aligned} & S_{\infty}=\frac{p}{1-q^{2}} \text { or } \frac{p}{1-(1-p)^{2}} \\ & \mathrm{P}(\text { odd })=\frac{1-q}{1-q^{2}} \\ & =\frac{1-q}{(1-q)(1+q)} \text { Must see this step for A1 } \\ & \left(=\frac{1}{1+q} \quad \text { AG }\right) \end{aligned}$ | M1 <br> M1 <br> M1 <br> A1 4 | $\begin{aligned} & \left(=\frac{p}{2 p-p^{2}}\right)=\frac{p}{p(2-p)} \\ & \left(=\frac{1}{2-\bar{p}}\right)=\frac{1}{2-(1-q)} \end{aligned}$ |

